Reduplication as intensification Evidence from French Sign Language

David Blunier, Ludyvine Couteau

CSSP 2025 Paris November 12, 2025

Outline

- Reduplication in French Sign Language
- 2 Morpho-phonology and distribution of RED
- RED as grammatical number
- Proposal: RED as an intensifier
- **5** Conclusion and open issues

Reduplication in LSF

- Like most sign languages, French Sign Language (LSF) makes a productive use of **reduplication**.
- In (1), the noun CHILD is repeated sidewards to indicate a plurality of children:
- (1) IX₁ HAVE MANY CHILD>+>+
 'I have many children.'

6/7

- Reduplication is also found in spoken languages (Hurch, 2005), illustrated below with Zamboangueno Philippine Creole Spanish (Rubino 2005, 24):
 - (2) a. kyère 'desire'
 - b. kyère-kyère'desire intensely'

- (3) a. birá 'return'
 - b. birá-birá 'keep returning'

Roadmap

- Present the morpho-phonology and distribution of RED in LSF;
- Present the main theoretical accounts of RED; introduce a number of puzzles left unnacounted for by such accounts.
- Introduce our analysis of RED as an intensifier.

Main idea

Provide evidence that the reduplication morpheme RED is **not** a morphological exponent of Number (Pizzuto and Corazza 1996, Pfau and Steinbach 2006 i.a.), but an **intensifier**, whose meaning is akin to *many/very*.

Elicitation methods

- The data in this work was collected using the playback method described in Schlenker et al. 2013, 2014
- The data was elicited with the help of two native LSF signers (ages 55 and 22).
- The sentences were graded using a 7-point likert scale and then resubmitted on different occasions to the same signers and re-graded, ensuring relative additional stability across judgments.
- Each example discussed here can be directly accessed through links to the videos; an OSF repository will host the complete data set.

Glossing conventions

- +: reduplication of sign
- >+: sideward movement in space followed by reduplication of sign
- a, b, c (subscripted): individual loci
- IX₁: first person
- IX₂: second person

Outline

- Reduplication in French Sign Language
- Morpho-phonology and distribution of RED
- RED as grammatical number
- Proposal: RED as an intensifier
- **5** Conclusion and open issues

Morpho-phonological constraints on RED

- Across SLs, reduplication is morphologically constrained (Pizzuto and Corazza 1996 for LIS; Sutton-Spence and Woll 1999 for BSL; Pfau and Steinbach 2006 for DGS; van Boven 2021,2024 for NGT).
- Two parameters: the location of the sign, as well as the type of movement it encodes (simple vs. complex). This is summarized in table
 1.

Morpho-phonological constraints on RED

	body-anchored			
simple movement		complex movement	(with or without movement) (B-noun)	
lateral noun (L-noun)	midsagittal noun (C-noun) (M-noun)			
sideward reduplication	simple reduplication	zero marking (underdetermination)		
(hyperdetermination)				

Reduplication strategies in DGS (Pfau and Steinbach, 2006, 159)

Morpho-phonological constraints on RED

- Although there is variation (c.f. van Boven 2024), reduplication is generally not available for body-anchored or complex-movement signs.
- LSF patterns with DGS and NGT in this respect: it seems that reduplication (RED) is only a possibility for nouns involving a simple movement, either in front of the signer (M-noun) or on the side (S-noun).

(4) RED possible

- а. воок (М)
- b. CHILD (S)
- c. Leaf (S)
- d. Person (S)

(5) RED not possible

- a. MOM (B)
- b. Fish (C)
- c. Water (C)

The distribution of RED in LSF

• In LSF, RED can be observed across grammatical categories.

(6)	No	uns	(7)	Ve	rbs	(8)	\mathbf{Ad}	jectives
	a.	ВООК		a.	SEND		a.	HARD
	b.	CHILD		b.	ASK-		b.	TRUE
	c.	LEAF			QUESTION		c.	RIGHT
	d.	PERSON		c.	GIVE		d.	
	e.	EVENT		d.	PICK-OUT			
	f			e.				

• At this stage, we found no RED-modified adverbs, but there might be.

RED and mass nouns

• In LSF, RED systematically occurs in mass nouns, which usually do not bear plural morphology cross-linguistically (Doetjes, 1997)

- (9) a. WATER
 - b. SAND
 - c. RICE
 - d. Shit
 - e. FLOUR

RED and quantity words

• RED can co-occur with quantity adjectives such as many:

(10)
$$PI_a$$
 TREE_a LEAF>+_a MANY 'This tree has a lot of leaves-RED.'

(11)
$$IX_1$$
 MESSAGE SEND>+>+ MANY . $6/7$ 'I sent many messages.'

RED and numerals

• RED-N is degraded with a numeral:

(12)	a.	IX ₁ HAVE 3 CHILD 'I have three children.'	6/7
	b.	IX ₁ HAVE 3 CHILD>+>+ 'I have three children-RED.'	3/4

	Q-adjective + RED	Num + RED	
LSF	✓	Х	
ÖGS	✓	✓	Skant et al. (2002)
LIS	✓	✓	Pizzuto and Corazza (1996)
NGT	✓	✓	Harder (2003), van Boven (2024)
Hausa SL	✓	✓	Schmaling (2000)
DGS	×	×	Pfau and Steinbach (2006)
ASL	X	X	Wilbur (1987), Neidle and Nash (2012)
ISL	×	×	Stavans (1996)

Table: Distribution of RED across SLs

Outline

- Reduplication in French Sign Language
- 2 Morpho-phonology and distribution of RED
- RED as grammatical number
- Proposal: RED as an intensifier
- **5** Conclusion and open issues

The meanings of RED

- Plurality (Pizzuto and Corazza 1996; Pfau and Steinbach 2006; Kuhn and Aristodemo 2017; van Boven 2024 i.a.)
- Aspect (Fischer 1973; Klima and Bellugi 1979; Sandler 2011; Wilbur 2005

 i.a.)
- Reciprocity (Pfau and Steinbach, 2003)
- Intensity (Quer 2019; Putri 2019)

RED as grammatical number

- It is standard in the literature to analyze RED as an exponent of grammatical plural number (Wilbur 1987, 2005; Pizzuto and Corazza 1996; Pfau and Steinbach 2006; Steinbach 2012; Neidle and Nash 2012; Koulidobrova 2018, 2021; van Boven 2021, 2024; van Boven et al. 2023 i.a.)
- RED is conceived as a form of optional number inflection (e.g., Pfau and Steinbach 2006)
- Supported by the fact that, across SLs, unreduplicated (bare) nouns can denote pluralities.

RED as grammatical number

• This also holds for LSF; the two sentences (13a) and (13b) can both be used to denote a plurality of children.

(13) a.
$$PI_a$$
 SHOP $_a$ CHILD $_b$ LIKE.A.LOT $_b$. 5/6 'Children like this shop a lot.'

b.
$$PI_a$$
 SHOP_a CHILD>+>+>+_b LIKE_b. 6/7
'Children-RED like this shop a lot.'

RED as grammatical number

- However, RED-N cannot be used to denote non-plural entities:
- (14) Context: there is just one child in the school.

 TEACHER_a WELCOME CHILD>+_a SCHOOL.

 'The teachers welcomed the child-RED at school.'
 - A similar pattern can be found in ASL (Koulidobrova 2018; Schlenker and Lamberton 2019), suggesting that plural is 'strong' in these languages, i.e. encode a 'more than one' meaning:

```
(15) A: HAVE TREE+>+>+> HERE.

'Do you have trees / Are there trees there?'
B: #YES, HAVE ONE PINE.

'Yes, I have one pine.'
B': NO, ONLY ONE.

'No, only one.'
```

[ASL, Koulidobrova 2018, (31)]

Is RED licensed by a plurality inference?

- The LSF and ASL patterns thus contrast with languages such as English, in which the plural is weak and can range over non-pluralities in DE-contexts:
- - b. The homework does not contain difficult problems.
 - → The homework does not contain any problem.

(Spector, 2007, (1))

- This suggests that the strong plural reading is derived via an implicature (Spector 2006, 2007; Zweig 2009; Ivlieva 2013 i.a.)

RED in DE-contexts

However, in LSF, too, N-RED is degraded in DE-contexts:

- (17) a. PI_a TREE_a LEAF NONE 6/7 'This tree has no leaves.'
 - b. PI_a TREE_a LEAF>+ NONE 'This tree has no leaves-RED.'
- (18) a. IF STUDENT $_a$ ALL READ BOOK, TEACHER $_b$ HAPPY 5/6 'If all the students read books, the teacher will be happy.'
 - b. IF ALL STUDENT_a READ BOOK>+>+, TEACHER_b HAPPY 5/6
 'If all the students read books-RED, the teacher will be happy.'

RED in DE-contexts

- But this is surprising: why would RED be degraded in such contexts, since it semantically denotes a plurality and is **not** the result of an implicature, as in English?
- As a consequence, a sentence such as 'This tree has no leaf-RED' should be fine with the meaning 'This tree has only one leaf'.
- However, our informants find these meanings difficult to access for (17b) and (18b).

RED in DE-contexts

• Examples below show that this patterns extends to other DE-contexts, such as the scope of quantifiers *few* or *never*:

(19)	a.	PI_a TREE _a LEAF FEW 'This tree has few leaves.'	7/6
	b.	PI _a TREE _a LEAF>+ FEW 'This tree has few leaves-RED.'	5/5

- (20) a. PI_a SCHOOL_a IN CHILD_a SEE NEVER
 'In this school, one never sees children.'

 b. PI_a SCHOOL_a IN CHILD>+_a SEE NEVER
 'In this school, one never sees children-RED.'
 - In this, LSF patterns with ASL, which exhibits similar restrictions (Schlenker and Lamberton 2019, (6b-d)).

V-RED as pluractionals

- As shown by Kuhn and Aristodemo (2017), RED can also be affixed to verbs in order to denote pluralities of events ('pluractionals').
- In Figure 2, the verb FORGET is reduplicated with a single hand, indicating distribution over instances of forgetting.

Figure 2. FORGET-rep in LSF: distribution over time (Kuhn and Aristodemo, 2017, 9)

V-RED as pluractionals

• In Figure 3, the verb FORGET is reduplicated with alternating hands, indicating distribution over participants.

Figure 3. FORGET-alt in LSF: distribution over participants (Kuhn and Aristodemo, 2017, 9)

RED and iconicity: nouns

- Previous studies show that some instances of reduplication have an iconic component (Schlenker and Lamberton 2019, 2022 for ASL; Kuhn and Aristodemo 2017 for LSF).
- Schlenker and Lamberton (2019) show that in ASL, nouns like TROPHY
 can be reduplicated sidewards, contributing to an iconic plural
 interpretation in which the trophies are arranged in a row:

```
(21) MUSEUM HAVE 7 TROPHY>+>+>+<sub>HORIZONTAL</sub> 7
'The museum has 7 trophies arranged in a row.'

[ASL; Schlenker and Lamberton 2019, (18)]
```

RED and iconicity: nouns

- At first sight, the ASL data seem to differ significantly from the LSF one;
- For instance, RED can appear with numerals, and contributes an iconic interpretation about the arrangement of trophies.
- However, we found no evidence for such iconic spatial enrichment for the LSF data involving N-RED.

RED and iconicity: nouns

- But: there are reasons to think that the iconic reduplication investigated by Schlenker and Lamberton 2019, 2022 is different from the RED morpheme observed in LSF.
- For instance, Schlenker and Lamberton (2019) report the following example:
- (22) GROW-UP IX₁ WIN TROPHY>+>+
 'I won many trophies growing up.'

 [ASL; Schlenker and Lamberton 2019, 57]
 - Schlenker and Lamberton (2019) remark that the sentence is acceptable
 with a plural meaning if reduplication is effectuated on the same
 location, which is otherwise banned from other iconic uses they
 observe.
 - Although further data is required, this suggests that there are actually two distinct phenomena, at least for nouns: iconic reduplication and RED, which seems to be much more grammatically constrained.

RED and iconicity: verbs

 Kuhn and Aristodemo (2017) provide evidence that RED+V has an at-issue iconic component, which contributes information about the speed of the event described:

- (23) a. BOOK $_{1}$ GIVE $_{q}$ -RED-SLOW
 - b. BOOK $_1$ GIVE $_a$ -RED-FAST BOOK $_1$ GIVE $_a$ -RED-MEDIUM 'Again and again, I gave a book to him.'
 - As for nouns, we did not find any iconicity effects of V-RED within our data.
 - Further investigation is needed in order to explore the extent to which V-RED can be interpreted iconically.

Outline

- Reduplication in French Sign Language
- 2 Morpho-phonology and distribution of RED
- RED as grammatical number
- Proposal: RED as an intensifier
- **5** Conclusion and open issues

Intensification

- We saw in the introduction that RED is commonly associated with intensification across SLs.
- For instance, Quer (2019) reports that in Catalan Sign Language (LSC), the following sentences convey that Joan ate and drank a lot:
- (24) a. SATURDAY NIGHT JOAN DRINK-REP 'Saturday night Joan drank a lot.'
 - b. RESTAURANT BUFFET JOAN EAT-ALT
 'At the restaurant buffet, Joan ate a lot.'

 [LSC. Oper 2019 (15-16)]

[LSC, Quer 2019, (15-16)]

RED as an intensifier

- The solution we are proposing is to analyze RED as a quantifier over degrees (Klein 1982; Schwarzschild 2002, 2005; Rett 2008, Rett 2014 i.a.).
- In what follows, we introduce degree semantics briefly and then expose our account.

- Natural language has many expressions that range over degrees or intervals.
- Adjectives such as e.g. tall or heavy are degree-dependent to some extent.
- Following Cresswell (1976), we assume that they take an additional argument ranging over degrees *d*, as in (25):

(25)
$$[tall] = \lambda d.\lambda x.tall(x).$$

• Type d is a shorthand for a triple $\langle D, >_o, \psi \rangle$, where D is a set of points, $>_o$ a total ordering on D, and ψ a dimension of measurement (Bartsch and Vennemann 1972; Bierwisch and Lang 1989).

 Although it is less obvious, NPs usually analyzed as ranging over individuals also have degree readings (Rett 2014, (20)-(22)):

(26) Numerals

- a. Four pizzas are vegetarian/were eaten by the senators. individual
- b. Four pizzas is enough/is more than what Bill asked for. degree

(27) Quantity words

- a. Many guest are drunk/were arrested after the party. *individual*
- b. Many guest is more than Bill had anticipated. degree

(28) Anaphoric dependencies

- a. John bought four pizzas. **They** were delicious. individual
- b. John bought four pizzas. It was more than we needed. degree

- A null type-shifter from individuals to their corresponding degrees allows us to compose nouns with quantity adjectives or measure phrases (Bartsch and Vennemann 1972; Cresswell 1976; Nerbonne 1995; Villalba 2003; Schwarzschild 2002, 2005 i.a.)
- Following Rett 2008, 2014, we call this operator MEAS, for 'measure':

The individual measurement operator MEAS

(29)
$$[MEAS] = \lambda P_{\langle e,t \rangle} \cdot \lambda d \cdot \lambda x \cdot P(x) \wedge \mu(x) = d$$

 MEAS applies to plural individuals and returns a degree that corresponds to the quantity (cardinality) of individuals in the set.

- (30) a. Ten votes have been counted.
 - b. $[MEAS]([votes]) = \lambda d\lambda x.[P(x) \wedge \mu(x) = d](\lambda x.vote(x)) = \lambda d\lambda x.vote(x) \wedge \mu(x) = d$
 - c. $[ten]([MEAS votes]) = [\lambda d\lambda x.vote(x) \land \mu(x) = d](10) = \lambda x.vote(x) \land \mu(x) = 10$
 - d. [ten MEAS votes have been counted] = $\lambda x.\text{vote}(x) \land \text{count}(x) \land \mu(x) = 10$
 - e. $=_{EC} \exists x. vote(x) \land count(x) \land \mu(x) = 10$

Degree semantics

• Degree readings are derived via application of another operator, D-MEAS, which quantifies over an interval/set of degrees D, with μ_d the measure of D (Rett 2014, 2018; Solt 2015).

The degree measurement operator D-MEAS

(31)
$$[D-MEAS_{\langle\langle d,t\rangle,\langle d,t\rangle\rangle}] = \lambda D_{\langle d,t\rangle}.\lambda d.\mu_d(D) = d$$

- The domain of D-MEAS/MEAS are plural entities:
 - Sets of individuals/events for MEAS
 - Sets of degrees for D-MEAS

Degree semantics

- (32) a. Ten votes is enough to win.
 - b. [Meas votes] = $\lambda d.\lambda x.\text{vote}(x) \wedge \mu(x) = d$
 - c. $=_{EC} \lambda d. \exists x. vote(x) \land \mu(x) = d$
 - d. $[D\text{-MEAS}]([MEAS \text{ votes}]) = [\lambda D_{\langle d,t \rangle}.\lambda d.\mu_d(D) = d](\lambda d.\exists x.\text{vote}(x) \land \mu(x) = d) = \lambda d'.\mu_d(\lambda d.\exists x.\text{vote}(x) \land \mu(x) = d) = d'$
 - e. [is enough to win] = λd .enough-win(d)
 - f. [is enough to win]([D-MEAS MEAS votes]) = $[\lambda d.\text{enough-win}(d)](\lambda d'.\mu_d(\lambda d.\exists x.\text{vote}(x) \land \mu(x) = d) = d') = \lambda d'.\mu_d(\lambda d.\exists x.\text{vote}(x) \land \mu(x) = d) = d' \land \text{enough}(d')$
 - g. $[ten]([D-MEAS MEAS votes is enough to win]) = [10](\lambda d'.\mu_d(\lambda d.\exists x.vote(x) \land \mu(x) = d) = d' \land enough(d')) = \mu_d(\lambda d.\exists x.vote(x) \land \mu(x) = d) = 10 \land enough(10)$

Quantity words as D-MEAS

- It has been proposed that Q(uantity)-words such as many, much, few are overt realizations of the D-MEAS operator (Cresswell 1976; Klein 1982; Schwarzschild 2005; Rett 2008, 2014, 2018; Brasoveanu 2008; Solt 2015 i.a.)
- Following Klein (1982) and Rett 2014, 2018, we assume that a word such as *many* lexicalizes the D-MEAS operator, augmented with an additional specification that the measure value ranges high with respect to a contextual standard s_c :

(33)
$$[many] = \lambda D.\lambda d.\mu_d(D) = d \wedge d > s_c$$

- Many denotes a degree modifier, a function from sets of degrees D to their measures μ_d , with the additional specification that this measure exceeds a contextual standard s_c .
- Few denotes a similar function targetting the lower end of s_c :

(34)
$$\llbracket few \rrbracket = \lambda D.\lambda d.\mu_d(D) = d \wedge d < s_c$$

Quantity words as D-MEAS

- (35) a. Many children came.
 - b. $[MEAS]([children]) = \lambda d\lambda x.[P(x) \wedge \mu(x) = d](\lambda x.children(x)) = \lambda d\lambda x.children(x) \wedge \mu(x) = d$
 - c. $=_{EC} \lambda d. \exists x [\text{children}(x) \wedge \text{came}(x) \wedge \mu(x) = d]$
 - d. $[many]([MEAS \text{ children came}]) = [\lambda D.\lambda d.\mu_d(D) = d \wedge d > s_c](\lambda d.\exists x[\text{children}(x) \wedge \text{came}(x) \wedge \mu(x) = d]) = \lambda d'[\mu_d(\lambda d.\exists x[\text{children}(x) \wedge \text{came}(x) \wedge \mu(x) = d]) = d' \wedge d' > s_c]$
 - e. $=_{EC} \exists d' [\mu_d(\lambda d. \exists x [\text{children}(x) \land \text{came}(x) \land \mu(x) = d]) = d' \land d' > s_c]$

Proposal: RED as a cross-categorial degree affix

• We propose that the morpheme RED in LSF is a degree modifier that encodes a contextual argument $> s_c$ just like many and much:

The LSF RED morpheme (degree modifier)

(36)
$$\llbracket -\text{Red} \rrbracket = \lambda D_{\langle d,t \rangle}.\lambda d.\mu_d(D) = d \wedge d > s_c$$

• RED therefore has the type of a degree modifier $\langle \langle d, t \rangle, \langle d, t \rangle \rangle$ and denotes a relation between an interval (set of degrees) D and the size of that interval d, provided through a variable μ over dimensions of measurement (quantity, height, weight, density, etc.)

RED as an intensifier: nouns

- Assuming that nouns are provided a degree argument through application of the MEAS operator, RED can subsequently apply and derive a reading corresponding to many N.
- \bullet MEAS takes the denotation of a noun (a set of individuals) and delivers their degree of measurement μ alongside some salient dimension (here, cardinality).
- RED takes this measure d and identifies it with d' while additionally specifying that d' is high with respect to some contextual standard.

(37) a.
$$[MEAS]([BOOK]) = \lambda P_{\langle e,t \rangle} . \lambda d. \lambda x. [P(x) \land \mu(x) = d](\lambda y. book(y)) = \lambda d. \lambda x. book(x) \land \mu_{||}(x) = d$$

b.
$$=_{EC} \lambda d. \exists x. [book(x) \wedge \mu_{||}(x) = d]$$

c.
$$[-RED]([MEAS BOOK]) = \lambda D_{\langle d,t \rangle}.\lambda d.\mu_d(D) = d \wedge d > s_c(\lambda d.\exists x.[book(x) \wedge \mu_{||}(x) = d]) = \lambda d'.\mu_d(\lambda d\exists x.[book(x) \wedge \mu_{||}(x) = d]) = d' \wedge d' > s_c$$

RED as an intensifier: nouns

- (38) a. STUDENT_a READ_a BOOK>+>+_a 'Students-RED read books.'
 - b. [STUDENT READ BOOK-RED] = $\lambda d'.\mu_d(\lambda d\exists x\exists y.[book(x) \land \mu_{||}(x) = d \land student(y) \land read(y,x)]) = d' \land d' > s_c$
 - c. $=_{ec} \exists d' [\mu_d(\lambda d \exists x \exists y.[book(x) \land \mu_{||}(x) = d \land student(y) \land read(y,x)]) = d' \land d' > s_c]$
 - d. 'There is a plurality of books of cardinality d s.t. some student read d and the measure of d is high relative to some contextually valued standard.'

RED as an intensifier: adjectives

• In order to compose with gradable adjectives like *hard* of type $\langle d\langle e,t,\rangle\rangle$, we assume that RED can also denote a degree-predicate modifier of type $\langle \langle d\langle e,t,\rangle\rangle, \langle d\langle e,t,\rangle\rangle\rangle$:

The LSF RED morpheme (degree-predicate modifier)

(39)
$$[-RED_A] = \lambda G_{\langle d\langle e,t \rangle \rangle} . \lambda d. \lambda x. G(d,x) \wedge d > s_c$$

 This version of RED is similar to the entry for very assumed e.g. in Kennedy and McNally (2005).

RED as an intensifier: adjectives

- (40) a. PI_a WALL_a HARD++

 'This wall is hard-RED.'
 - b. $[HARD] = \lambda d\lambda x.hard(x, d)$
 - c. $[-RED_A]([HARD]) = \lambda G_{\langle d\langle e,t\rangle\rangle}.\lambda d.\lambda x.G(d,x) \wedge d > s_c(\lambda d\lambda x.hard(x,d)) = \lambda d\lambda x.[hard(x,d) \wedge d > s_c]$
 - d. $[PI WALL HARD-RED] = \exists x \exists d[wall(x) \land hard(d, x) \land d > s_c]$
 - e. 'This wall x whose hardness d is above the contextual standard.'

RED as an intensifier: verbs

• Assuming that some version of MEAS can also apply to events to deliver their corresponding degrees alongside some dimension of measurement μ , we can also derive the meaning of RED when it attaches to verbs:

The event measurement operator MEAS

(41)
$$[MEAS] = \lambda P_{\langle v,t \rangle} . \lambda d. \lambda e. P(e) \wedge \mu(e) = d$$

• For the sake of simplicity, we leave aside the distinction between the two realizations of RED analyzed in Kuhn and Aristodemo 2017.

RED as an intensifier: verbs

- (42) a. C-A-M-I-L-L-E BUY>+>+ DRESS . 'Camille bought-RED dresses.'
 - b. $[MEAS]([BUY]) = \lambda P_{\langle v,t \rangle}.\lambda d.\lambda e.[P(e) \wedge \mu(e) = d](\lambda e.buy(e)) = \lambda d.\lambda e.buy(e) \wedge \mu_{|\cdot|}(e) = d$
 - c. $=_{\mathsf{EC}} \lambda d. \exists e. [\mathsf{buy}(e) \land \mu_{||}(e) = d]$
 - d. $[-RED]([MEAS BUY]) = \lambda D_{\langle d,t \rangle}.\lambda d.\mu_d(D) = d \wedge d > s_c(\lambda d.\exists e.[buy(e) \wedge \mu_{||}(e) = d]) = \lambda d'.\mu_d(\lambda d \exists e.[buy(e) \wedge \mu_{||}(e) = d]) = d' \wedge d' > s_c$

RED as an intensifier: verbs

- (43) a. [CAMILLE BOUGHT-RED DRESS] = $\lambda d'.\mu_d(\lambda d \exists e.[buy(e) \land AGENT(C,e) \land THEME(dr,e) \land \mu_{||}(e) = d]) = d' \land d' > s_c$
 - b. $=_{\mathsf{EC}} \exists d' [\mu_d(\lambda d \exists e. [\mathsf{buy}(e) \land \mathsf{AGENT}(C, e) \land \mathsf{THEME}(dr, e) \land \mu_{||}(e) = d]) = d' \land d' > \mathsf{s}_c]$
 - c. 'There is a degree d' of dress-buying events e by Camille which cardinality is above the contextual standard.'

Why can't RED appear in DE-environments?

 The basic idea: this is because the semantics of RED are akin to that of many and encode a contextual argument denoting the upper range of a measure scale s_c.

(44)
$$\llbracket -\text{RED} \rrbracket = \lambda D_{\langle d,t \rangle} . \lambda d. \mu_d(D) = d \wedge d > s_c$$

(45)
$$\llbracket many \rrbracket = \lambda D_{\langle d,t \rangle}.\lambda d.\mu_d(D) = d \wedge d > s_c$$

• The degree modifier *few*, however, denotes the lower end of a similar scale (or the higher end of the reversed *many* scale, c.f. Rett 2018):

(46)
$$\llbracket few \rrbracket = \lambda D.\lambda d.\mu_d(D) = d \wedge d < s_c$$

Why can't RED appear in DE-environments?

- (47) a. $??PI_a$ TREE $_a$ LEAF+ FEW 'This tree has a few leaves-RED.'
 - b. $[MEAS]([LEAF]) = \lambda P_{\langle e,t \rangle}.\lambda d.\lambda x.[P(x) \wedge \mu(x) = d](\lambda y.leaf(y)) = \lambda d.\lambda x.leaf(x) \wedge \mu_{|\cdot|}(x) = d$
 - c. $=_{EC} \lambda d. \exists x. [leaf(x) \land \mu_{||}(x) = d]$
 - d. [-RED]([MEAS LEAF]]) = $\lambda D_{\langle d,t \rangle} \cdot \lambda d \cdot \mu_d(D) = d \wedge d > s_c(\lambda d \cdot \exists x.[leaf(x) \wedge \mu_{|\cdot|}(x) = d]) = \lambda d' \cdot \mu_d(\lambda d \exists x.[leaf(x) \wedge \mu_{|\cdot|}(x) = d]) = d' \wedge d' > s_c$
 - e. [Few]([Meas leaf-red]) = $\lambda D.\lambda d.\mu_d(D) = d \wedge d < s_c(\lambda d'.\mu_d(\lambda d \exists x.[leaf(x) \wedge \mu_{||}(x) = d]) = d' \wedge d' > s_c) = \lambda d'.\mu_d(\lambda d \exists x.[leaf(x) \wedge \mu_{||}(x) = d]) = d' \wedge d' > s_c \wedge d' < s_c$
 - f. 'For a given individual x, the measure of the function mapping each degree d to whether there are leaves y of x with measure d is d' and d' is above the contextual standard and below the contextual standard.'

→ ??

Why can't RED appear in DE-environments?

- However, this does not predict RED to be infelicitous under negation, producing a 'not many - not very' reading.
- A possible solution (to be investigated further) is that RED has a PPI-like behavior (p.c. Andreea Nicolae).

Why can't RED compose with numerals?

'I have three children-RED.'

• Recall that in LSF, RED is degraded when co-occurring with numerals:

```
(48) a. IX<sub>1</sub> HAVE 3 CHILD 6/7
'I have three children.'
b. IX<sub>1</sub> HAVE 3 CHILD>+>+
3/4
```

One possible solution to this problem is syntactic in nature: once a
predicate has composed with a numeral, it cannot compose further with
RED because a variable d is no longer available.

Why can't RED compose with numerals?

 Assuming that numerals and other measure phrases are of type d (Kennedy, 2013), those saturate the degree argument provided by MEAS, preventing RED to apply:

- (49) a. $^{?}$ IX₁ HAVE 3 CHILD>+>+ 'I have three children-RED.'
 - b. $[3] = 3_d$
 - c. $[MEAS]([CHILD]) = \lambda P_{\langle e,t \rangle}.\lambda d.\lambda x.[P(x) \wedge \mu(x) = d](\lambda y.child(y)) = \lambda d.\lambda x.child(x) \wedge \mu_{|\cdot|}(x) = d$
 - d. [MEAS CHILD]([3]) = $\lambda d.\lambda x.[child(x) \wedge \mu_{||}(x) = d](3) = \lambda x.child(x) \wedge \mu_{||}(x) = 3$
 - However, this should lead to ungrammaticality proper, not just infelicity.
 - This account forces us to stipulate additional syntactic parametrization to account for the cross-linguistic variation (NUM+RED being observed in ÖGS, LIS and NGT).

Outline

- Reduplication in French Sign Language
- 2 Morpho-phonology and distribution of RED
- RED as grammatical number
- Proposal: RED as an intensifier
- **5** Conclusion and open issues

Conclusions

- Contrary to standard approaches of RED in sign language, which treat it
 as an exponent of grammatical plural number, we have proposed to
 analyze it in LSF as a degree modifier, akin to many and very.
- We therefore straightforwardly derive the intensification meaning associated with the various uses of RED.
- Such an analysis also helps us to understand why (what is taken to be)
 LSF plural number marking surfaces in unexpected places, e.g. on mass nouns.
- It also helps us to understand why RED can associate further with *many*, but not with other quantity words such as *few*: since RED has the same semnantics as the former, it is expected not to surface with *few*, which denotes the opposite interval of measure.

Conclusion

- However, our analysis falls short at accounting for the infelicity of RED in other DE-contexts, such as negation.
- As it stands, it also predicts that RED should behave uniformly across SLs, contrary to fact.

Thank you!

Feedback much welcome: david.lucas.simon@gmail.com ludyvine.couteau@outlook.fr

References I

- Bartsch, R. and Vennemann, T. (1972). The grammar of relative adjectives and comparison. In Formal Aspects of Cognitive Processes: Interdisciplinary Conference Ann Arbor, March 1972, pages 168–185. Springer.
- Bierwisch, M. and Lang, E. (1989). The semantics of gradation. In Bierwisch, M. and Lang, E., editors, *Dimensional adjectives: grammatical structure and conceptual interpretation*. Springer.
- Brasoveanu, A. (2008). Measure noun polysemy and monotonicity: Evidence from romanian pseudopartitives. In *Proceedings of the 38th meeting of the north east linguistic society*, pages 139–150. GSLA-UMASS MA.
- Cresswell, M. J. (1976). The semantics of degree. In *Montague grammar*, pages 261–292. Elsevier.
- Doetjes, J. S. (1997). Quantifiers and selection: On the distribution of quantifying expressions in French, Dutch and English. Leiden University.
- Fischer, S. D. (1973). Two processes of reduplication in the american sign language. *Foundations of language*, 9(4):469–480.
- Hurch, B. (2005). Studies on reduplication. Number 28. Walter de Gruyter.
- Ivlieva, N. (2013). Scalar implicatures and the grammar of plurality and disjunction. PhD thesis, Massachusetts Institute of Technology.

References II

- Kennedy, C. (2013). A scalar semantics for scalar readings of number words. From grammar to meaning: The spontaneous logicality of language, 172:200.
- Kennedy, C. and McNally, L. (2005). Scale structure, degree modification, and the semantics of gradable predicates. *Language*, 81(2):345–381.
- Klein, E. (1982). The interpretation of adjectival comparatives. *Journal of Linguistics*, 18(1):113–136.
- Klima, E. S. and Bellugi, U. (1979). The signs of language. Harvard University Press.
- Koulidobrova, E. (2018). Counting nouns in asl. Manuscript, Central Connecticut State University. http://ling. auf. net/lingbuzz/003871.
- Koulidobrova, E. (2021). Counting (on) bare nouns: revelations from american sign language. In *Things and stuff: the semantics of the count-mass distinction*, pages 213–231. Cambridge University Press Cambridge.
- Kuhn, J. and Aristodemo, V. (2017). Pluractionality, iconicity, and scope in french sign language. Semantics and Pragmatics, 10.
- Neidle, C. and Nash, J. (2012). The noun phrase. In Pfau, R., Steinbach, M., and Woll, B., editors, *Sign language*: An international handbook. De Gruyter Mouton.
- Nerbonne, J. (1995). Nominal comparatives and generalized quantifiers. *Journal of logic, language and information*, 4(4):273–300.

References III

- Pfau, R. and Steinbach, M. (2003). Optimal reciprocals in german sign language. Sign Language & Linguistics, 6(1):3–42.
- Pfau, R. and Steinbach, M. (2006). Pluralization in sign and in speech: A cross-modal typological study. *Linguistic Typology*, (10):135–182.
- Pizzuto, E. and Corazza, S. (1996). Noun morphology in italian sign language (lis). *Lingua*, 98(1-3):169–196.
- Putri, D. R. (2019). A morphological study of sign language: Reduplication in kata kolok. In Fifth Prasasti International Seminar on Linguistics (PRASASTI 2019), pages 112–117. Atlantis Press.
- Quer, J. (2019). Reduplication revisited: verbal plurality and exhaustivity in the visual-gestural modality. Sensos-e, 6(1).
- Rett, J. (2008). Degree modification in natural language. PhD thesis, Rutgers University.
- Rett, J. (2014). The polysemy of measurement. Lingua, 143:242-266.
- Rett, J. (2018). The semantics of many, much, few, and little. Language and linguistics compass, 12(1):e12269.
- Rubino, C. (2005). Reduplication: Form, function and distribution. In Hurch, B., editor, *Studies on reduplication*, volume 28, pages 11–29. Mouton de Gruyter Berlin.
- Sandler, W. (2011). Phonological representation of the sign: Linearity and nonlinearity in American Sign Language, volume 32. Walter de Gruyter.

References IV

- Schlenker, P. (2014). Iconic features. Natural Language Semantics, 22(4):299-356.
- Schlenker, P. and Lamberton, J. (2019). Iconic plurality. Linguistics and Philosophy, 42:45–108.
- Schlenker, P. and Lamberton, J. (2022). Meaningful blurs: The sources of repetition-based plurals in asl. *Linguistics and Philosophy*, 45(2):201–264.
- Schlenker, P., Lamberton, J., and Santoro, M. (2013). Iconic variables. *Linguistics and philosophy*, 36(2):91–149.
- Schwarzschild, R. (2002). The grammar of measurement. In Semantics and linguistic theory, pages 225–245.
- Schwarzschild, R. (2005). Measure phrases as modifiers of adjectives. *Recherches linguistiques de Vincennes*, (34):207–228.
- Solt, S. (2015). Q-adjectives and the semantics of quantity. *Journal of semantics*, 32(2):221–273.
- Spector, B. (2006). Aspects de la pragmatique des opérateurs logiques. PhD thesis, Paris 7.
- Spector, B. (2007). Aspects of the pragmatics of plural morphology: On higher-order implicatures. In *Presupposition and implicature in compositional semantics*, pages 243–281. Springer.
- Steinbach, M. (2012). Plurality. In Pfau, R., Steinbach, M., and Woll, B., editors, *Sign language:* An international handbook. De Gruyter Mouton.

References V

- Sutton-Spence, R. and Woll, B. (1999). The linguistics of British Sign Language: an introduction. Cambridge University Press.
- van Boven, C. (2021). Phonological restrictions on nominal pluralization in sign language of the netherlands: evidence from corpus and elicited data. *Folia Linguistica*, 55(2):313–359.
- van Boven, C., Hamann, S., and Pfau, R. (2023). Nominal plurals in sign language of the netherlands: Accounting for allomorphy and variation. *Glossa: a journal of general linguistics*, 8(1).
- van Boven, C. M. J. (2024). Morphological reduplication in Sign Language of the Netherlands: A typological and theoretical perspective. PhD thesis, Universiteit van Amsterdam.
- Villalba, X. (2003). An exceptional exclamative sentence type in romance. *Lingua*, 113(8):713–745.
- Wilbur, R. B. (1987). American Sign Language: linguistic and applied dimensions. Little, Brown and Co.
- Wilbur, R. B. (2005). A reanalysis of reduplication in american sign language. In Hurch, B., editor, *Studies on Reduplication*. Mouton de Gruyter.
- Zweig, E. (2009). Number-neutral bare plurals and the multiplicity implicature. *Linguistics and philosophy*, 32(4):353–407.